1. A scientist collected information about the percentage of fat in people's diet and the number of deaths from heart disease in various countries around the world.

The information was plotted in the graph below.

(i) What can you conclude about the percentage of fat in the diet and the chance of dying from heart disease?
\qquad
(ii) What two lifestyle changes might you suggest to a person from the USA in order to decrease their chance of dying from heart disease?

1
\qquad

2
\qquad
2. Smoking cigarettes increases the risk of developing lung cancer. This risk can be reduced by stopping smoking.

The graph shows the risk of developing lung cancer in people who have never smoked and people who have stopped smoking.

Look at the graph.
(i) What does the number <30 on the horizontal axis mean?
\qquad
(ii) Steve was 45 years old when he stopped smoking.

Write down his increase of percentage risk of developing lung cancer if he had waited until he was 55 years old.
increase of percentage risk = \qquad \% [2]
(iii) Write down two different conclusions that can be made from looking at the graph.
\qquad
\qquad
\qquad
(iv) The graph does not show the age at which people started smoking.

Suggest why this information is important when making conclusions from the graph.
\qquad
\qquad
---121
3. Smoking is an example of an unhealthy lifestyle choice.

Write down two other examples of an unhealthy lifestyle choice.
Explain why each lifestyle choice may cause health problems.

Lifestyle choice 1 \qquad

Lifestyle choice 2 \qquad
\qquad

4(a). Swelling of the aorta is dangerous.

The swelling is called an aneurysm.
A swollen aorta can burst and usually results in death.

Men are screened to detect a dangerous swelling of the aorta.

The diameter of a healthy aorta is approximately 2 cm .

The diameter of the aorta was measured in two groups of men aged over 65.
The range of diameters of the aorta is shown in the graph for both groups.

It was decided to give the men in Group 2 surgery to repair the aneurysm.
Men in Group 1 were not given surgery.

Look at the graph.
(i) Doctors have to decide whether or not to operate to repair an aneurysm.

Write down the minimum diameter of the aorta at which doctors decided to operate.
\qquad
(ii) Some men who had an aneurysm of 6 cm were operated on, while others were not.

Suggest two reasons why
\qquad
\qquad
(b). Surgery always carries some risk.

Suggest why most patients are prepared to accept this risk when agreeing to have the surgery.
(c). An aneurysm is repaired by inserting a plastic tube called a stent into the aorta.

In 1990, the risk of death from this operation was 5.7%.

Explain the difference between perceived and calculated risk when patients decide whether or not to have the operation.
\qquad
\qquad
5. Neil is worried that he might have too much body fat and be overweight.

Here are some facts about Neil:

- his age is 43
- his body fat is 29%
- his mass is 90 kg
- his height is 1.7 m

Look at the formula, table and body fat chart below.

$$
\text { Body Mass Index }(\mathrm{BMI})=\frac{\text { body mass }(\mathrm{kg})}{[\text { height }(\mathrm{m})]^{2}}
$$

BMI	Category
<19	underweight
$19-24$	healthy weight
$25-29$	overweight
$30-40$	obese
>40	very obese

BODY FAT \% MEASUREMENT CHART FOR MEN

AGE	18-20	2.0	3.9	6.2	8.5	10.5	12.5	14.3	16.0	17.5	18.9	20	21.3	22.3	23.1	23.8	24.3	24.9
	21-25	2.5	4.9	7.3	9.5	11.6	13.6	15.4	17.0	18.6	20.0	21.3	22.3	23.3	24.2	24.9	25.4	25
	26-30	3.5	6.0	8.4	10.6	12.7	14.6	16.4	18.1	19.6	21.0	22.3	23.4	24.4	25.2	25.9	26.5	26
	31-35	4.5	7.1	9.4	11.7	13.7	15.7	17.5	19.2	20.7	22.1	23.4	24.5	25.5	26.3	27.0	27.5	28
	36-40	5.6	8.1	10.5	12,7	14.8	16.8	18.6	20.2	21.8	23.2	24.4	25,6	26.5	27.4	28.1	28.6	29
	41-45	6.7	9.2	11.5	13.8	15.9	17.8	19.6	21.3	22.8	24.7	25.5	26.6	27.6	28.4	29.1	29	30
	46-50	7.7	10.2	12.6	14.8	16.9	18.9	20.7	22.4	23.9	25.3	26.6	27.7	28.7	29.5	30.2	30.	31
	51-55	8.8	11.3	13.7	15.9	18.0	20.0	21.8	23.	25.0	26.4	27.6	28.7	29.7	30.6	31.2	31.8	32.
\dagger	>55	9.9	12.4	14.7	17	19	21.	22.8	24	26.0	27	28.	29.8	30	31.	32.3	32.9	33
				an				Ideal			Average			Above average				

Should Neil be worried?
Use the information on the opposite page to explain your conclusion and suggest what action Neil should take.

The quality of written communication will be assessed in your answer.

6(a). Robert is worrying about his blood pressure.
He decides to measure his blood pressure every day.
Blood pressure consists of two readings.
Systolic pressure is when the heart muscle is contracting.
Diastolic pressure is when the heart muscle is relaxing.
The graph shows Robert's blood pressure taken over sixty days.

(i) Use the graph to find Robert's blood pressure readings on day 1.
systolic \qquad
diastolic \qquad
(ii) Robert looks at a chart about blood pressure readings.

Use this chart and your answer to part (i) to describe Robert's blood pressure on day 1.
Put a tick $(\boldsymbol{\checkmark})$ in the correct box.

	low	ideal	pre-high	high
Robert's blood pressure on day 1				

(b). At some point during the sixty days, Robert's doctor gave him some medicine to reduce his blood pressure.

On which day do you think that Robert started to take his medicine?
day \qquad
(c). Robert's blood pressure changes from day to day.

Suggest one other reason why.
(d). Robert's average systolic blood pressure for the first seven days was 142.7 mm Hg . The table shows his systolic blood pressure for the last seven days.
(i) Complete the table by calculating Robert's average (mean) systolic blood pressure readings for the last seven days.

Day	Robert's systolic blood pressure in mm Hg
54	125
55	120
56	115
57	125
58	120
59	120
60	115
mean	

(ii) Suggest why scientists often calculate the mean of a set of data.
\qquad
\qquad
(iii) Write down the range of systolic readings of Robert's blood pressure during the last seven days.
from to \qquad
(iv) Use the data to provide evidence that the medicine reduced Robert's blood pressure.
\qquad
\qquad
\qquad
7. Ian decides to join a running club.

At the first session, the instructor takes lan's resting pulse rate.

The instructor wants to work out how much blood the heart pumps out in a minute.

This is called cardiac output.

He uses this formula.
cardiac output $=$ pulse rate \times volume of blood pumped out per heart beat

The results for lan and three other members of the running club are shown in the table.

Name	Resting pulse rate in beats per minute	Volume of blood pumped out per heart beat in cm^{3}	Cardiac output in cm^{3} per minute
Alistair	80	75	6000
Byron		80	5440
Colin	75	70	4970
Ian	92		

(i) Calculate lan's cardiac output.
\qquad cm^{3} per minute [1]
(ii) The instructor says that resting pulse rate is a good indication of fitness.

The lower your resting pulse rate the fitter you are.

Use the data in the table to work out who is the fittest person.
(iii) Although the pulse rate measurements are accurate, the instructor is not convinced that his measurements identify the fittest person.

Suggest reasons why he may think this, and explain what he could do to have more confidence in his measurements.
\qquad
8. Having an unhealthy lifestyle can increase the risk of some conditions.

Which of the following conditions are most likely caused by lifestyle factors? Put ticks (?) in the boxes next to the three correct answers.

Huntington's disease inherited from mother
obesity
sore throat caused by bacterial infection
heart disease
skin cancer
common cold caused by a virus
cystic fibrosis inherited from both parents
colour blindness inherited from father

9(a). Jason is concerned that he may be overweight.

He wants to calculate his Body Mass Index (BMI).
He knows that his mass is 86.0 kg and his height is 1.70 m .

The formula used to calculate BMI is

$$
\mathrm{BMI}=\frac{\text { mass }(\mathrm{kg})}{[\text { height }(\mathrm{m})]^{2}}
$$

Use the formula to calculate Jason's BMI to three significant figures.
Show your working.

$$
\mathrm{BMI}=
$$

(b). Use the result of your calculation and the table below to determine Jason's condition.

BMI reading	
<18.5	underweight
$18.5-24.9$	healthy weight
$25.0-29.9$	overweight
$\square 30.0$	obese

Jason's condition \qquad
(c). Jason is concerned about the repeatability of the data he has collected and the accuracy of the equipment that he has used.
Explain what is meant by repeatability and accuracy in this case.
\qquad
\qquad
\qquad
\qquad
(d). Jason knows that the greater his BMI, the greater his risk of having heart disease.
(i) Jason looks at this table of data that he sees on the internet.

BMI	Increased risk of heart disease
$23-25$	50%
$26-29$	72%

He concludes that the increased risk is reduced from 72% to 50% if the BMI is reduced from 26 to 25 .

What is the problem with Jason's interpretation of the data?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(ii) Jason loses weight.

His doctor tells him that his probability of having a heart attack within the next ten years is 0.3%.
Use this example to discuss the risk to Jason, by referring to probability and consequence.
\qquad
\qquad
\qquad
\qquad
10. Ranjit has high blood pressure. It is increasing his risk of heart disease.

Explain blood pressure measurements and suggest why they may vary between individuals.

The quality of written communication will be assessed in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11(a) A student examined this graph about heart disease.

It shows the deaths from heart disease in men and women, depending upon how much money they earned (income).

The student made the following conclusions.

Using only information from the graph, put ticks (?) in the boxes next to the three correct conclusions.

With a very low income, women are certain to get heart disease. \square

In women, each time income is halved, the risk of heart disease is doubled. \square

Men are more at risk of heart disease than women. \square

With a high income, women are more at risk of heart disease than men. \square

There are other risk factors for heart disease apart from income. \square

No one with a high income gets heart disease.

For men, the lower the income the greater the risk of heart disease.

From middle to high income, the risk for women remains unchanged. \square
(b). Which beginning, A, B, C or D, and which end, 1, 2, 3 or 4 , of a sentence, when put together, gives the best conclusion?

beginning

A	An outcome exists between a factor and a correlation ...
B	The study needs to be repeated ...
C	Low income increases the risk of heart disease ...
D	The right decision is the one that leads to the best outcome ...

end

$\mathbf{1}$	\ldots and proves the factor is a causal link.
$\mathbf{2}$	\ldots and this needs to be peer reviewed by other scientists.
$\mathbf{3}$	\ldots and includes the greatest number of people involved.
$\mathbf{4}$	\ldots but does not always lead to it.

answer \qquad and \qquad
(c). Scientists need to consider different factors when designing a study.

When designing this study on heart disease, they decided on three factors to make sure the data collected was valid.

Put ticks (?) in the boxes next to the three correct factors.

All the men should be the same height. \square

Both the men and the women should be chosen at random. \square

The sample size should be as large as possible. \square

The women should all have a high income. \square

Only people with a history of heart disease should be included. \square

The two groups should be checked that they match on as many factors as possible. \square

The study should be a double blind trial. \square

Question		Answer/Indicative content	Marks	Guidance
1	i	As the percentage of fat in the diet increases, the greater the risk of dying from heart disease \downarrow	1	
	ii	Any two from Reduce amount of fat in diet \checkmark Reduce stress \downarrow Stop smoking \checkmark Take (regular) exercise \checkmark	2	ALLOW reduce cholesterol / salt
		Total	3	
2	i	Less than / before 30; (age) when stopped smoking;	2	Do not accept 30 (and under) Examiner's Comments Most candidates scored both marks for saying "less than 30" and "when they give up smoking". However several candidates only gave one of the responses thus scoring only one of the marks. Only a few candidates stated that " $<$ " meant more than.
	ii	$\begin{aligned} & 11-5.6 ; \\ & 5.4 ; \end{aligned}$	2	5.4 alone $=2$ marks Examiner's Comments Many candidates struggled with the percentage calculation. Credit was given for the correct answer without the calculations but candidates should be warned that this is a risky strategy. Some candidates were awarded one mark for correctly showing the calculation even though they completed the calculation incorrectly. Candidates would be well advised to show their calculations.

Question	Answer/Indicative content	Marks	Guidance
iii	Any two from: The younger you are when you stop the lower the risk / the older you are when you stop the higher the risk; Even if never smoked still have a risk / low(est) risk; Rate of increase of risk increases with age / doubles every ten years;	2	Do NOT ACCEPT the LONGER you smoke the higher the risk ORA Do not accept The longer / later (you leave it) to stop smoking the higher the risk Accept positive correlation between age and risk for 1 mark Examiner's Comments This was a good discriminator. Good answers included "the older you are when you stop, the higher the risk" or "even if you have never smoked there is a small risk". The most common error was to refer to the time that a person had been smoking. This was not credited as it was impossible from the data to determine the length of time that people had smoked. Indeed that was covered in the next question.
iv	(As) how long they have smoked......; increases, risk increases;	2	Accept idea that it is uncertain how long they have been smoking. Trend must be identified for $2^{\text {nd }}$ mark e.g. longer you smoke the bigger the risk ORA = 2 marks; Examiner's Comments This required candidates to demonstrate that they realised that this would allow the determination of time that people had smoked. Very few went on to score the second mark by referring to the length of time spent smoking affected the risk of developing cancer.
	Total	8	

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | | $\begin{array}{l}\text { Food / intake idea eg Poor diet explained } \\ \text { eg fat clogs arteries; } \\ \text { Exercise idea eg Lack of exercise } \\ \text { explained eg unfit ORA; }\end{array}$ | 2 | $\begin{array}{l}\text { Accept recreational / illegal drugs and } \\ \text { alcohol for Food idea } \\ \text { Accept any good explanation. e.g fat clogs } \\ \text { arteries / salt raises blood pressure } \\ \text { Examiner's Comments }\end{array}$ |
| This was an example where some | | | | |\(\left.] \begin{array}{l}candidates did not read the question

carefully. Simply identifying lifestyle

choices did not gain marks unless the

choice was explained. Thus "a sugary diet"

did not score but "a diet rich in sugar could

lead to type 2 diabetes" did score.\end{array}\right]\)

Question			Answer/Indicative content	Marks	Guidance
4	a	i	4.5 (cm);	1	Examiner's Comments This question discriminated well between candidates. Most candidates gave the correct answer of 4.5 cm . The most common incorrect response was 6.5 cm .
		ii	2 from: Any idea / example of different circumstance or risk eg age / weight / health / lifestyle / fitness / etc; Some were in group 1; Some decided not to have surgery;	2	AO is same size so ignore "more urgent" arguments. "They" refers to group 1 Examiner's Comments This question discriminated well between candidates. Examiners credited answers from three areas. For example, good responses included reference to the risks involved in the operation, the fact that patients in Group 1 were not operated upon, and finally that some patients simply decided not to have the operation.
	b		Idea of benefit outweighs risk;	1	Accept risk of aneurism outweighs risk of surgery Risk of not having the surgery is greater. Examiner's Comments This question discriminated well between candidates. This was well answered with the most common response being that the benefits outweighed the risks.

Question		Answer/Indicative content	Marks	Guidance
c	c	Calculated risk is 5.7% / based on data / stats / results / numbers; Perceived risk is what the patient thinks (the risks are) / opinion;	2	Ignore risk is calculated / probability / valueb Ignore doctors opinion Examiner's Comments This question discriminated well between candidates. Many candidates struggled with this. Good answers included responses such as perceived risk is what the patients think the risk is and calculated risk includes data/statistics/numbers. Candidates should avoid tautology such as saying perceived risk is what the patient perceives and calculated risk is what the patient calculates.
		Total	6	

Question		Answer/Indicative content	Marks	Guidance	
					the mark to ensure that candidates were given the mark that they deserved.
			Total	6	

| Question | | Answer/ndicative content | | Marks | Guidance | |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- |
| 6 | a | i | | $15595 ;$ | 1 | $\begin{array}{l}\text { Both required for the mark } \\ \text { Units not required } \\ \text { Examiner's Comments } \\ \text { Most candidates correctly identified both }\end{array}$ |
| the diastolic and systolic pressure readings | | | | | | |
| from the graph. Both readings were | | | | | | |
| required to score the mark. | | | | | | |$]$

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| ii |
| :--- |

Question		Answer/Indicative content	Marks	Guidance	
7					

Question		Answer/Indicative content	Marks	Guidance
9	a	$\begin{aligned} & 86 / 1.70^{2} \text { OR 86/1.7 }{ }^{2}(1) \\ & 29.8(1) \end{aligned}$	2	Any answer between and including 29? 30 $=1$ mark do not accept units $/ \mathrm{cm}^{2}$ 29.8 alone scores 2 marks Examiner's Comments This question proved to be a straightforward start to the examination with most candidates scoring both marks. For candidates who did not write down the correct answer, credit was available for one mark for correct substitution of the numbers into the formula.
	b	overweight	1	ecf Examiner's Comments The vast majority of candidates correctly realised that the category for BMI had changed to overweight and thus scored the mark. Examiners were instructed to use an error carried forward from part (a) to ensure that candidates were not penalised for the same mistake twice.
	c	accuracy how close to true value / correct value (1) repeatability the readings are nearly the same / close to previous reading / similar (1)	2	ignore how accurate the readings were ignore / right value / valid / precise ignore equipment gives correct results Examiner's Comments This question discriminated well. Just over one third of candidates failed to score. However those who had learnt the definition knew that accuracy was how close to the true value the measurement was and that repeatability meant getting the same results when the experiment was repeated. Weaker candidates simply thought that the experiment had to be repeated.

Question		Answer/Indicative content	Marks	Guidance	
d	i	$\begin{array}{l}\text { Any two from: } \\ \text { BMI change of 26 ? 25/1 / which is small / } \\ \text { which is borderline; } \\ \text { so change in risk would be smaller (than } \\ \text { 22\%) / idea that not everyone in range } \\ \text { would have same risk / tose higher in } \\ \text { range would have a higher risk ORA; } \\ \text { Idea that risk data is averaged / mean }\end{array}$	2		$\begin{array}{l}\text { ignore ref to risk factors } \\ \text { ignore estimate } \\ \text { Examiner's Comments } \\ \text { This proved to be a difficult question with }\end{array}$
over a third of candidates failing to score.					
Most scored one of the two marks					
available. Good answers included					
reference to the fact that the BMI change					
was very small so the change in risk would					
be small, or that the risk was averaged					
from the group and not everyone within the					
group would have the same risk. Weaker					
candidates wrote about BMI and the					
different factors that affected the risk of					
having heart disease.					

	uestion	Answer/Indicative content	Marks	Guidance
10		Level 3 (5-6 marks) Explain blood pressure is the pressure of the blood on the walls of the arteries. Explains how at least one factor affects blood pressure Quality of written communication does not impede communication of the science at this level. Level 2 (3-4 marks) Explains why there are two blood pressure numbers. Describes factors as increasing or decreasing blood pressure. Quality of written communication partially impedes communication of the science at this level. Level 1 (1-2 marks) Gives examples of factors which cause blood pressure to vary between individuals. Quality of written communication impedes communication of the science at this level. Level 0 (0 marks) Insufficient or irrelevant science. Answer not worthy of credit.	6	This question is targeted at grades up to A / A* Indicative scientific points at Level 3 may include: - arteries have muscular walls to maintain pressure when heart is relaxing - how cholesterol deposits increase blood pressure - how exercise can reduce blood pressure - how aging / hardening arteries increase blood pressure - how nicotine increase blood pressure Indicative scientific points at Level 2 may include: - describes blood pressure measurement as two numbers - higher number is when heart is contracting - lower number is when heart is relaxing - 120/80 = normal - Eg increased fitness decreases blood pressure Indicative scientific points at Level 1 may include: - weight / fitness / age / stress / inheritance / drugs / smoking / salt / fat - genetic Ignore references to poor / healthy diet. Use the L1, L2, L3 annotations in Scoris; do not use ticks. Examiner's Comments This was the second of the six-mark extended-writing questions. Blood pressure was not on the previous specification and many candidates did not seem to have a

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |

